skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Jianjian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thermoradiative energy conversion presents a means for the direct conversion of thermal energy through radiative transfer to a cold scene. However, much of the study of thermoradiative principles has been based on theory and simulations, with only sparse reports on the experimental demonstration of the concept. This work studies thermoradiative energy conversion in InAs/GaSb/AlInSb/GaSb type-II superlattice cascade devices. The devices exhibit a cutoff wavelength of 3.2 μm at 300 K, corresponding to a bandgap of 0.39 eV. Testing under a temperature-controlled chamber and scene demonstrates a maximum power density of 2.9 mW/m2 at a cell temperature of 121 °C. It is consistent with expected values for device operation limited by Shockley–Read–Hall non-radiative recombination. This result is a significant step in providing an experimental demonstration of thermoradiative energy conversion and a means to characterize cell performance, providing a foundation for further development to achieve practical values for power generation. 
    more » « less
  2. Freeform Fresnel optics represent an emerging category of modern optics that reproduces powerful optical functionalities while maintaining an ultra-compact volume. The existing ultra-precision machining (UPM) technique faces technical challenges in meeting the fabrication requirements for freeform Fresnel optics because of the absence of appropriate geometry definition and corresponding tool path planning strategy to overcome the extreme asymmetry and discontinuity. This study proposes a new scheme for ultra-precision machining using four axes (X,Y,Z,C) to fabricate freeform Fresnel optics, including a general geometry description for freeform Fresnel optics, the quasi-spiral tool path generation strategy to overcome the lack of rotary symmetry, and the adaptive tool pose manipulation method for avoiding tool interference. In addition, the tool edge compensation and the adaptive timestep determination are also introduced to enhance the performance and efficiency of the proposed scheme. The machining of two exemplary freeform Fresnel lenses is successfully demonstrated. Overall, this study introduces a comprehensive routine for the fabrication of freeform Fresnel optics and proposes the adaptive tool pose manipulation scheme, which has the potential for broader applications in the ultra-precision machining of complex or discontinuous surfaces. 
    more » « less